Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(12): eadl0849, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517965

RESUMO

Icy moons like Enceladus, and perhaps Europa, emit material sourced from their subsurface oceans into space via plumes of ice grains and gas. Both moons are prime targets for astrobiology investigations. Cassini measurements revealed a large compositional diversity of emitted ice grains with only 1 to 4% of Enceladus's plume ice grains containing organic material in high concentrations. Here, we report experiments simulating mass spectra of ice grains containing one bacterial cell, or fractions thereof, as encountered by advanced instruments on board future space missions to Enceladus or Europa, such as the SUrface Dust Analyzer onboard NASA's upcoming Europa Clipper mission at flyby speeds of 4 to 6 kilometers per second. Mass spectral signals characteristic of the bacteria are shown to be clearly identifiable by future missions, even if an ice grain contains much less than one cell. Our results demonstrate the advantage of analyses of individual ice grains compared to a diluted bulk sample in a heterogeneous plume.


Assuntos
Meio Ambiente Extraterreno , Júpiter , Gelo , Exobiologia/métodos , Oceanos e Mares
2.
Space Sci Rev ; 219(8): 81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046182

RESUMO

The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).

3.
Astrobiology ; 23(11): 1213-1227, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962841

RESUMO

The concept of a biosignature is widely used in astrobiology to suggest a link between some observation and a biological cause, given some context. The term itself has been defined and used in several ways in different parts of the scientific community involved in the search for past or present life on Earth and beyond. With the ongoing acceleration in the search for life in distant time and/or deep space, there is a need for clarity and accuracy in the formulation and reporting of claims. Here, we critically review the biosignature concept(s) and the associated nomenclature in light of several problems and ambiguities emphasized by recent works. One worry is that these terms and concepts may imply greater certainty than is usually justified by a rational interpretation of the data. A related worry is that terms such as "biosignature" may be inherently misleading, for example, because the divide between life and non-life-and their observable effects-is fuzzy. Another worry is that different parts of the multidisciplinary community may use non-equivalent or conflicting definitions and conceptions, leading to avoidable confusion. This review leads us to identify a number of pitfalls and to suggest how they can be circumvented. In general, we conclude that astrobiologists should exercise particular caution in deciding whether and how to use the concept of biosignature when thinking and communicating about habitability or life. Concepts and terms should be selected carefully and defined explicitly where appropriate. This would improve clarity and accuracy in the formulation of claims and subsequent technical and public communication about some of the most profound and important questions in science and society. With this objective in mind, we provide a checklist of questions that scientists and other interested parties should ask when assessing any reported detection of a "biosignature" to better understand exactly what is being claimed.


Assuntos
Aceleração , Planeta Terra , Exobiologia
4.
Nature ; 618(7965): 489-493, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316718

RESUMO

Saturn's moon Enceladus harbours a global1 ice-covered water ocean2,3. The Cassini spacecraft investigated the composition of the ocean by analysis of material ejected into space by the moon's cryovolcanic plume4-9. The analysis of salt-rich ice grains by Cassini's Cosmic Dust Analyzer10 enabled inference of major solutes in the ocean water (Na+, K+, Cl-, HCO3-, CO32-) and its alkaline pH3,11. Phosphorus, the least abundant of the bio-essential elements12-14, has not yet been detected in an ocean beyond Earth. Earlier geochemical modelling studies suggest that phosphate might be scarce in the ocean of Enceladus and other icy ocean worlds15,16. However, more recent modelling of mineral solubilities in Enceladus's ocean indicates that phosphate could be relatively abundant17. Here we present Cassini's Cosmic Dust Analyzer mass spectra of ice grains emitted by Enceladus that show the presence of sodium phosphates. Our observational results, together with laboratory analogue experiments, suggest that phosphorus is readily available in Enceladus's ocean in the form of orthophosphates, with phosphorus concentrations at least 100-fold higher in the moon's plume-forming ocean waters than in Earth's oceans. Furthermore, geochemical experiments and modelling demonstrate that such high phosphate abundances could be achieved in Enceladus and possibly in other icy ocean worlds beyond the primordial CO2 snowline, either at the cold seafloor or in hydrothermal environments with moderate temperatures. In both cases the main driver is probably the higher solubility of calcium phosphate minerals compared with calcium carbonate in moderately alkaline solutions rich in carbonate or bicarbonate ions.

5.
J Am Soc Mass Spectrom ; 34(5): 878-892, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37018538

RESUMO

Small ice particles play an important role in atmospheric and extraterrestrial chemistry. Circumplanetary ice particles that are encountered by space probes at hypervelocities play a critical role in the determination of surface and subsurface properties of their source bodies. Here we present an apparatus for the generation of low-intensity beams of single mass-selected charged ice particles under vacuum. They are produced via electrospray ionization of water at atmospheric pressure and undergo evaporative cooling when transferred to vacuum through an atmospheric vacuum interface. m/z selection is achieved through two subsequent quadrupole mass filters operated in the variable-frequency mode within a range of m/z values between 8 × 104 and 3 × 107. Velocity and charge of the selected particles are measured using a nondestructive single-pass image charge detector. From the known electrostatic acceleration potentials and settings of the quadrupoles the particle masses could be obtained and be accurately controlled. It has been shown that the droplets are frozen within the transit time of the apparatus such that ice particles are present after the quadrupole stages and finally detected. The demonstrated correspondence between particle mass and specific quadrupole potentials in this device allows preparation of beams of single particles with a repetition rate between 0.1 and 1 Hz with various diameter distributions from 50 to 1000 nm at 30-250 eV of kinetic energy per charge. This corresponds to velocities and particle masses quickly available between 600 m/s (80 nm) and 50 m/s (900 nm) and particle charge numbers (positive) between 103 and 104[e], depending upon size.

6.
Anal Chem ; 95(7): 3621-3628, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36753610

RESUMO

The coupling of an Orbitrap-based mass analyzer to the laser-induced liquid beam ion desorption (LILBID) technique has been investigated, with the aim to reproduce the mass spectra recorded by Cassini's Cosmic Dust Analyzer (CDA) in the vicinity of Saturn's icy moon Enceladus. LILBID setups are usually coupled with time-of-flight (TOF) mass analyzers, with a limited mass resolution (∼800 m/Δm). Thanks to the Orbitrap technology, we developed a unique analytical setup that is able to simulate hypervelocity ice grains' impact in the laboratory (at speeds in the range of 15-18 km/s) with an unprecedented high mass resolution of up to 150 000 m/Δm (at m/z 19 for a 500 ms signal duration). The results will be implemented in the LILBID database and will be useful for the calibration and future data interpretation of the Europa Clipper's SUrface Dust Analyzer (SUDA), which will characterize the habitability of Jupiter's icy moon Europa.

7.
Astrobiology ; 23(1): 60-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454287

RESUMO

The reliable identification of biosignatures is key to the search for life elsewhere. On ocean worlds like Enceladus or Europa, this can be achieved by impact ionization mass spectrometers, such as the SUrface Dust Analyzer (SUDA) on board NASA's upcoming Europa Clipper mission. During spacecraft flybys, these instruments can sample ice grains formed from subsurface water and emitted by these moons. Previous laboratory analog experiments have demonstrated that SUDA-type instruments could identify amino acids, fatty acids, and peptides in ice grains and discriminate between their abiotic and biotic origins. Here, we report experiments simulating impact ionization mass spectra of ice grains containing DNA, lipids, and metabolic intermediates extracted from two bacterial cultures: Escherichia coli and Sphingopyxis alaskensis. Salty Enceladan or Europan ocean waters were simulated using matrices with different NaCl concentrations. Characteristic mass spectral signals, such as DNA nucleobases, are clearly identifiable at part-per-million-level concentrations. Mass spectra of all substances exhibit unambiguous biogenic patterns, which in some cases show significant differences between the two bacterial species. Sensitivity to the biosignatures decreases with increasing matrix salinity. The experimental parameters indicate that future impact ionization mass spectrometers will be most sensitive to the investigated biosignatures for ice grain encounter speeds of 4-6 km/s.


Assuntos
Meio Ambiente Extraterreno , Gelo , Meio Ambiente Extraterreno/química , Exobiologia , Bactérias , Lipídeos
8.
Proc Natl Acad Sci U S A ; 119(39): e2201388119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122219

RESUMO

Saturn's moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean-seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42-), and total dissolved inorganic P could reach 10-7 to 10-2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10-10 mol/kg H2O from previous estimates and close to or higher than ∼10-6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus's ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability.


Assuntos
Sulfeto de Hidrogênio , Fósforo , Amônia , Carbono , Dióxido de Carbono , Minerais , Oceanos e Mares , Fosfatos , Dióxido de Silício , Água
9.
Astrobiology ; 20(10): 1168-1184, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32493049

RESUMO

Identifying and distinguishing between abiotic and biotic signatures of organic molecules such as amino acids and fatty acids is key to the search for life on extraterrestrial ocean worlds. Impact ionization mass spectrometers can potentially achieve this by sampling water ice grains formed from ocean water and ejected by moons such as Enceladus and Europa, thereby exploring the habitability of their subsurface oceans in spacecraft flybys. Here, we extend previous high-sensitivity laser-based analog experiments of biomolecules in pure water to investigate the mass spectra of amino acids and fatty acids at simulated abiotic and biotic relative abundances. To account for the complex background matrix expected to emerge from a salty Enceladean ocean that has been in extensive chemical exchange with a carbonaceous rocky core, other organic and inorganic constituents are added to the biosignature mixtures. We find that both amino acids and fatty acids produce sodiated molecular peaks in salty solutions. Under the soft ionization conditions expected for low-velocity (2-6 km/s) encounters of an orbiting spacecraft with ice grains, the unfragmented molecular spectral signatures of amino acids and fatty acids accurately reflect the original relative abundances of the parent molecules within the source solution, enabling characteristic abiotic and biotic relative abundance patterns to be identified. No critical interferences with other abiotic organic compounds were observed. Detection limits of the investigated biosignatures under Enceladus-like conditions are salinity dependent (decreasing sensitivity with increasing salinity), at the µM or nM level. The survivability and ionization efficiency of large organic molecules during impact ionization appear to be significantly improved when they are protected by a frozen water matrix. We infer from our experimental results that encounter velocities of 4-6 km/s are most appropriate for impact ionization mass spectrometers to detect and discriminate between abiotic and biotic signatures.


Assuntos
Aminoácidos/análise , Exobiologia , Ácidos Graxos/análise , Gelo , Meio Ambiente Extraterreno , Gelo/análise , Planetas Menores , Oceanos e Mares
10.
Space Sci Rev ; 216(1): 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025060

RESUMO

The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus' plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core.

11.
Astrobiology ; 20(2): 179-189, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825243

RESUMO

Reliable identification of biosignatures, such as amino acids, fatty acids, and peptides, on extraterrestrial ocean worlds is a key prerequisite for space missions that search for life or its emergence on these worlds. One promising approach is the use of high-performance in situ impact ionization mass spectrometers to sample water ice grains emerging from ocean-bearing moons such as Europa or Enceladus. A predecessor of such detectors, the Cosmic Dust Analyzer on board the Cassini spacecraft, has proven to be very successful in analyzing inorganic and organic ocean constituents and with that characterizing the habitability of Enceladus ocean. However, biosignatures have not been definitively identified in extraterrestrial ocean environments so far. Here, we investigate with an analog experiment the spectral appearance of amino acids, fatty acids, and peptides in water ice grains, together with their detection limits, as applicable to spaceborne mass spectrometers. We employ a laboratory-based laser induced liquid beam ion desorption technique, proven to simulate accurately the impact ionization mass spectra of water ice grains over a wide range of impact speeds. The investigated organics produce characteristic mass spectra, with molecular peaks as well as clearly identifiable, distinctive fragments. We find the detection limits of these key biosignatures to be at the µM or nM level, depending on the molecular species and instrument polarity, and infer that impact ionization mass spectrometers are most sensitive to the molecular peaks of these biosignatures at encounter velocities of 4-6 km/s.


Assuntos
Biomarcadores/análise , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Gelo/análise , Espectrometria de Massas/métodos , Aminoácidos/análise , Poeira Cósmica/análise , Ácidos Graxos/análise , Limite de Detecção , Oceanos e Mares , Peptídeos/análise , Saturno
12.
Rapid Commun Mass Spectrom ; 33(22): 1751-1760, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31286576

RESUMO

RATIONALE: Detecting ice grains with impact ionization mass spectrometers in space provides information about the compositions of ice grains and their sources. Depending on the impact speeds of the ice grains onto the metal target of a mass spectrometer, ionization conditions can vary substantially, resulting in changes to the appearance of the resulting mass spectra. METHODS: Here we accurately reproduce mass spectra of water ice grains, recorded with the Cosmic Dust Analyzer (CDA) on board the Cassini spacecraft at typical impact speeds ranging between 4 km/s to 21 km/s, with a laboratory analogue experiment. In this Laser-Induced Liquid Beam Ion Desorption (LILBID) approach, a µm-sized liquid water beam is irradiated with a pulsed infrared laser, desorbing charged analyte and solvent aggregates and isolated ions, which are subsequently analyzed in a time-of-flight (TOF) mass spectrometer. RESULTS: We show that our analogue experiment can reproduce impact ionization mass spectra of ice grains obtained over a wide range of impact speeds, aiding the quantitative analyses of mass spectra from space. CONCLUSIONS: Spectra libraries created with the LILBID experiment will be a vital tool for inferring the composition of ice grains from mass spectra recorded by both past and future impact ionization mass spectrometers (e.g. the SUrface Dust Analyzer (SUDA) onboard NASA's Europa Clipper Mission or detectors on a future Enceladus Mission).

13.
Science ; 362(6410)2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287635

RESUMO

Saturn's main rings are composed of >95% water ice, and the nature of the remaining few percent has remained unclear. The Cassini spacecraft's traversals between Saturn and its innermost D ring allowed its cosmic dust analyzer (CDA) to collect material released from the main rings and to characterize the ring material infall into Saturn. We report the direct in situ detection of material from Saturn's dense rings by the CDA impact mass spectrometer. Most detected grains are a few tens of nanometers in size and dynamically associated with the previously inferred "ring rain." Silicate and water-ice grains were identified, in proportions that vary with latitude. Silicate grains constitute up to 30% of infalling grains, a higher percentage than the bulk silicate content of the rings.

14.
Nature ; 558(7711): 564-568, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29950623

RESUMO

Saturn's moon Enceladus harbours a global water ocean 1 , which lies under an ice crust and above a rocky core 2 . Through warm cracks in the crust 3 a cryo-volcanic plume ejects ice grains and vapour into space4-7 that contain materials originating from the ocean8,9. Hydrothermal activity is suspected to occur deep inside the porous core10-12, powered by tidal dissipation 13 . So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material6,14,15. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus' organic inventory in enhanced concentrations.


Assuntos
Meio Ambiente Extraterreno/química , Saturno , Exobiologia , Gelo/análise , Volatilização
15.
16.
Nat Commun ; 6: 8604, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26506464

RESUMO

It has been suggested that Saturn's moon Enceladus possesses a subsurface ocean. The recent discovery of silica nanoparticles derived from Enceladus shows the presence of ongoing hydrothermal reactions in the interior. Here, we report results from detailed laboratory experiments to constrain the reaction conditions. To sustain the formation of silica nanoparticles, the composition of Enceladus' core needs to be similar to that of carbonaceous chondrites. We show that the presence of hydrothermal reactions would be consistent with NH3- and CO2-rich plume compositions. We suggest that high reaction temperatures (>50 °C) are required to form silica nanoparticles whether Enceladus' ocean is chemically open or closed to the icy crust. Such high temperatures imply either that Enceladus formed shortly after the formation of the solar system or that the current activity was triggered by a recent heating event. Under the required conditions, hydrogen production would proceed efficiently, which could provide chemical energy for chemoautotrophic life.

17.
Nature ; 519(7542): 207-10, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25762281

RESUMO

Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

18.
Science ; 345(6198): 786-91, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25124433

RESUMO

Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

19.
Rev Sci Instrum ; 82(9): 095111, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974623

RESUMO

Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s(-1). Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s(-1) and with diameters of between 0.05 µm and 5 µm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.

20.
Rapid Commun Mass Spectrom ; 23(24): 3895-906, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19924687

RESUMO

The study of hyper-velocity impacts of micrometeoroids is important for the calibration of dust sensors in space applications. For this purpose, submicron-sized synthetic dust grains comprising either polystyrene or poly[bis(4-vinylthiophenyl)sulfide] were coated with an ultrathin overlayer of an electrically conductive organic polymer (either polypyrrole or polyaniline) and were accelerated to speeds between 3 and 35 km s(-1) using the Heidelberg Dust Accelerator facility. Time-of-flight mass spectrometry was applied to analyse the resulting ionic impact plasma using a newly developed Large Area Mass Analyser (LAMA). Depending on the projectile type and the impact speed, both aliphatic and aromatic molecular ions and cluster species were identified in the mass spectra with masses up to 400 u. Clusters resulting from the target material (silver) and mixed clusters of target and projectile species were also observed. Impact velocities of between 10 and 35 km s(-1) are suitable for a principal identification of organic materials in micrometeoroids, whereas impact speeds below approximately 10 km s(-1) allow for an even more detailed analysis. Molecular ions and fragments reflect components of the parent molecule, providing determination of even complex organic molecules embedded in a dust grain. In contrast to previous measurements with the Cosmic Dust Analyser instrument, the employed LAMA instrument has a seven times higher mass resolution--approximately 200--which allowed for a detailed analysis of the complex mass spectra. These fundamental studies are expected to enhance our understanding of cometary, interplanetary and interstellar dust grains, which travel at similar hyper-velocities and are known to contain both aliphatic and aromatic organic compounds.


Assuntos
Poeira Cósmica/análise , Espectrometria de Massas/métodos , Nanopartículas/química , Espectrometria de Massas/instrumentação , Compostos Orgânicos/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...